Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
J Mater Chem B ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726947

ABSTRACT

Powder-based hemostatic technology has offered unprecedented opportunities in surgical sealing and repair of irregularly shaped and noncompressible wounds. Despite their routine use, existing clinical hemostatic powders are challenged either by poor mechanical properties or inadequate adhesion to bleeding tissues in biological environments. Here, inspired by the mussel foot proteins' fusion assembly strategy, a novel silk fibroin-based hemostatic powder (named as SF/PEG/TA) with instant and robust adhesion performance is developed. Upon absorbing interfacial liquids, the SF/PEG/TA powders rapidly swell into micro-gels and subsequently contact with each other to transform into a macroscopically homogeneous hydrogel in situ, strengthening its interfacial bonding with various substrates in fluidic environments. The in vitro and in vivo results show that the SF/PEG/TA powder possesses ease of use, good biocompatibility, strong antibacterial activities, and effective blood clotting abilities. The superior hemostatic sealing capability of the SF/PEG/TA powder is demonstrated in the rat liver, heart, and gastrointestinal injury models. Moreover, in vivo investigation of rat skin incision and gastrointestinal perforation models validates that the SF/PEG/TA powder promotes wound healing and tissue regeneration. Taken together, compared to existing clinical hemostatic powders, the proposed SF/PEG/TA powder with superior wound treatment capabilities has high potential for clinical hemostasis and emergency rescue.

2.
Small ; : e2307485, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623988

ABSTRACT

Severe burn wounds usually destroy key cells' functions of the skin resulting in delayed re-epithelization and wound regeneration. Promoting key cells' activities is crucial for burn wound repair. It is well known that keratinocyte growth factor-2 (KGF-2) participates in the proliferation and morphogenesis of epithelial cells while acidic fibroblast growth factor (aFGF) is a key mediator for fibroblast and endothelial cell growth and differentiation. However, thick eschar and the harsh environment of a burn wound often decrease the delivery efficiency of fibroblast growth factor (FGF) to the wound site. Therefore, herein a novel microneedle patch for sequential transdermal delivery of KGF-2 and aFGF is fabricated to enhance burn wound therapy. aFGF is first loaded in the nanoparticle (NPaFGF) and then encapsulated NPaFGF with KGF-2 in the microneedle patch (KGF-2/NPaFGF@MN). The result shows that KGF-2/NPaFGF@MN can successfully get across the eschar and sequentially release KGF-2 and aFGF. Additional data demonstrated that KGF-2/NPaFGF@MN achieved a quicker wound closure rate with reduced necrotic tissues, faster re-epithelialization, enhanced collagen deposition, and increased neo-vascularization. Further evidence suggests that improved wound healing is regulated by significantly elevated expressions of hypoxia-inducible factor-1 alpha (HIF-1ɑ) and heat shock protein 90 (Hsp90) in burn wounds. All these data proved that KGF-2/NPaFGF@MN is an effective treatment for wound healing of burns.

3.
Inorg Chem ; 63(15): 6767-6775, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38569160

ABSTRACT

Electrolytic hydrogen production via water splitting holds significant promise for the future of the energy revolution. The design of efficient and abundant catalysts, coupled with a comprehensive understanding of the hydrogen evolution reaction (HER) mechanism, is of paramount importance. In this study, we propose a strategy to craft an atomically precise cluster catalyst with superior HER performance by cocoupling a Mo2O4 structural unit and a Cu(I) alkynyl cluster into a structured framework. The resulting bimetallic cluster, Mo2Cu17, encapsulates a distinctive structure [Mo2O4Cu17(TC4A)4(PhC≡C)6], comprising a binuclear Mo2O4 subunit and a {Cu17(TC4A)2(PhC≡C)6} cluster, both shielded by thiacalix[4]arene (TC4A) and phenylacetylene (PhC≡CH). Expanding our exploration, we synthesized two homoleptic CuI alkynyl clusters coprotected by the TC4A and PhC≡C- ligands: Cu13 and Cu22. Remarkably, Mo2Cu17 demonstrates superior HER efficiency compared to its counterparts, achieving a current density of 10 mA cm-2 in alkaline solution with an overpotential as low as 120 mV, significantly outperforming Cu13 (178 mV) and Cu22 (214 mV) nanoclusters. DFT calculations illuminate the catalytic mechanism and indicate that the intrinsically higher activity of Mo2Cu17 may be attributed to the synergistic Mo2O4-Cu(I) coupling.

4.
J Food Sci ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571450

ABSTRACT

Fructus Aurantii (FA) is an edible and medicinal functional food used worldwide that enhances digestion. Since raw FA (RFA) possesses certain side effects for some patients, processed FA (PFA) is commonly used in clinical practice. This study aimed to establish an objective and comprehensive quality evaluation of the PFA that employed the technique of steaming and fermentation. Combined with the volatile and non-volatile components, as well as the regulation of gut microbiota, the differentiation between RFA and PFA was analyzed. The results showed that the PFA considerably reduced the contents of flavonoid glycosides while increasing hesperidin-7-O-glucoside and flavonoid aglycones. The electronic nose and GC-MS (Gas chromatography/mass spectrometry) effectively detected the variation in flavor between RFA and PFA. Correlation analysis revealed that eight volatile components (relative odor activity value [ROAV] ≥ 0.1) played a key role in inducing odor modifications. The original floral and woody notes were subdued due to decreased levels of linalool, sabinene, α-terpineol, and terpinen-4-ol. After processing, more delightful flavors such as lemon and fruity aromas were acquired. Furthermore, gut microbiota analysis indicated a significant increase in beneficial microbial taxa. Particularly, Lactobacillus, Akkermansia, and Blautia exhibited higher abundance following PFA treatment. Conversely, a lower presence of pathogenic bacteria, including Proteobacteria, Flexispira, and Clostridium. This strategy contributes to a comprehensive analysis technique for the quality assessment of FA, providing scientific justifications for processing FA into high-value products with enhanced health benefits. PRACTICAL APPLICATION: This study provided an efficient approach to Fructus Aurantii quality evaluation. The methods of fermentation and steaming showed improved quality and safety.

5.
Nat Mater ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514846

ABSTRACT

Limitations in electrochemical performance as well as supply chain challenges have rendered positive electrode materials a critical bottleneck for Li-ion batteries. State-of-the-art Li-ion batteries fall short of accessing theoretical capacities. As such, there is intense interest in the design of strategies that enable the more effective utilization of active intercalation materials. Pre-intercalation with alkali-metal ions has attracted interest as a means of accessing higher reversible capacity and improved rate performance. However, the structural basis for improvements in electrochemical performance remains mostly unexplored. Here we use topochemical single-crystal-to-single-crystal transformations in a tunnel-structured ζ-V2O5 positive electrode to illustrate the effect of pre-intercalation in modifying the host lattice and altering diffusion pathways. Furthermore, operando synchrotron X-ray diffraction is used to map Li-ion site preferences and occupancies as a function of the depth of discharge in pre-intercalated materials. Na- and K-ion intercalation 'props open' the one-dimensional tunnel, reduces electrostatic repulsions between inserted Li ions and entirely modifies diffusion pathways, enabling orders of magnitude higher Li-ion diffusivities and accessing higher capacities. Deciphering the atomistic origins of improved performance in pre-intercalated materials on the basis of single-crystal-to-single-crystal topochemical transformation and operando diffraction studies paves the way to site-selective modification approaches for positive electrode design.

6.
Chem Commun (Camb) ; 60(26): 3583-3586, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38470082

ABSTRACT

An imidazolyl hydrogen-bonded organic framework (HOF-T) with outstanding thermal and water stability was constructed by C-H⋯N hydrogen bonding and C-H⋯π interactions. UO22+ can be selectively captured by the imidazole group of HOF-T and rapidly reduced to UO2 under visible light irradiation, realizing exceptional uranium removal with high capacity and fast kinetics.

7.
Bioelectrochemistry ; 157: 108668, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38387209

ABSTRACT

Fe-Co@CNF was synthesized by electrospinning technology, and AuNPs was loaded onto Fe-Co@CNF by in-situ reduction to obtain Fe-Co@CNF@AuNPs composite material, which was used as the working electrode based on Au-S bond cooperation. The tetracycline electrochemical sensing interface Fe-Co@CNF@AuNPs@Apt was constructed by connecting mercaptoylated tetracycline (TC) aptamers on Fe-Co@CNF@AuNPs surface. The morphology and composition of Fe-Co@CNF@AuNPs composites were characterized by SEM, TEM, EDS, XRD and XPS, and the electrochemical properties of tetracycline were evaluated by CV and DPV. The results showed that the addition of Fe and Co did not destroy the structure of the original carbon nanofibers, and their synergistic effect enhanced the electrocatalytic performance, effective electrode area and electron transfer ability of carbon nanofibers. AuNPs are evenly distributed over the fibers, which effectively improves the electrical conductivity of the material. Under the optimal conditions, the theoretical detection limit of tetracycline was 0.213 nM, and the linear detection range was 5.12-10 mM, which could successfully detect tetracycline in milk.


Subject(s)
Metal Nanoparticles , Nanofibers , Carbon/chemistry , Gold/chemistry , Nanofibers/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents , Tetracycline , Electrochemical Techniques , Electrodes
8.
J Mater Chem B ; 12(9): 2334-2345, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38327236

ABSTRACT

Intracellular bacteria often lead to chronic and recurrent infections; however, most of the known antibiotics have poor efficacy against intracellular bacteria due to their poor cell membrane penetration efficiency into the cytosol. Here, a thiol-mediated nanodrug delivery system, named Van-DM NPs, was developed to improve vancomycin's penetration efficiency and intracellular antibacterial activities. Van-DM NPs were prepared through self-assembly of vancomycin (Van) and the disulfide molecule (DM) in NaOH buffer solution. On the one hand, the disulfide exchange reaction between Van-DM NPs and the bacterial surface enhances vancomycin accumulation in bacteria, increasing the local concentration of vancomycin. On the other hand, the disulfide exchange reaction between Van-DM NPs and the mammalian cell membrane triggered the translocation of Van-DM NPs across the mammalian cell membrane into the cell cytosol. These dual mechanisms promote antibacterial activities of vancomycin against both extracellular and intracellular bacteria S. aureus. Furthermore, in an intravenous S. aureus infection mouse model, Van-DM NPs exhibited high antibacterial capability and efficiently reduced the bacterial load in liver and spleen, where intracellular bacteria tend to reside. Altogether, the reported Van-DM NPs would be highly promising against intracellular pathogenic infections.


Subject(s)
Nanoparticles , Vancomycin , Animals , Mice , Vancomycin/pharmacology , Staphylococcus aureus , Disulfides , Anti-Bacterial Agents/pharmacology , Bacteria , Mammals
9.
J Ethnopharmacol ; 326: 117990, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38423412

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Banxia Xiexin decoction (BXD) is a classic traditional Chinese medicine prescription for treating ulcerative colitis (UC). However, its potential mechanism of action is still unclear. AIM OF THE STUDY: Reveal the correlation between the beneficial impacts of BXD on UC and the composition of the gut microbiota. MATERIALS AND METHODS: The major constituents of BXD were identified using the HPLC-DAD technique. An experimental model of UC was induced in male C57BL/6 mice by administering dextran sodium sulfate (DSS). A total of 48 mice were divided into different groups, including control, model, high-dose BXD treatment, medium-dose BXD treatment, low-dose BXD treatment, and a group treated with 5-amino acid salicylic acid (5-ASA). Body weight changes and disease activity index (DAI) scores were documented; colon length, colon index, spleen index, and thymus index scores were determined; myeloperoxidase (MPO) and tumor necrosis factor-α (TNF-α) activities were assessed; and histological staining with hematoxylin-eosin and alcian blue/phosphate Schiff was performed. The immunofluorescence technique was employed to examine the presence of ZO-1 and occludin in the colon tissue. 16S rRNA sequencing was employed to assess the gut microbiota's diversity and metabolomics was utilized to examine alterations in metabolites within the gut microbiota. The impact of BXD on the gut microbiota was confirmed through fecal microbiota transplantation (FMT). RESULTS: BXD exhibited a positive impact on UC mice, particularly in the high-dose BXD treatment group. The BXD group experienced weight recovery, decreased DAI scores, improved colon length, and restored of spleen and thymus index scores compared to the DSS group. Additionally, BXD alleviated colon damage and the inflammatory response while restoring intestinal barrier function. FMT in BXD-treated mice also showed therapeutic effects in UC mice. At the phylum level, the relative abundance of Desulfobacterota, Deferribacterota and Actinobacteriota increased; at the genus level, g__norank__f__Muribaculaceae, Dubosiella, Akkermansia, and Lactobacillus increased, whereas Faecalibaculum, Alloprevotella, Turicibacter, and g_Paraprevotella decreased. g__norank_f__Muribaculaceae was positively correlated with body weight and colon length and negatively with colon index scores, splenic index scores, and MPO levels; Alloprevotella was positively correlated with splenic index scores, histological scores, and TNF-α levels and negatively with thymus index scores and thymus index scores. Faecalibaculum was positively correlated with colon index scores and MPO levels. Metabolic investigations revealed 58 potential indicators, primarily associated with the metabolism of amino acids, purines, and lipids. Alloprevotella, g_Paraprevotella, and Bifidobacterium were strongly associated with metabolic pathways. CONCLUSION: BXD showed beneficial therapeutic effects in UC mice. The mechanism may be by promoting the balance and variety of gut microbiota, as well as regulating the metabolism of amino acids, purines, and lipids.


Subject(s)
Antifibrinolytic Agents , Colitis, Ulcerative , Colitis , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Male , Animals , Mice , Mice, Inbred C57BL , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , RNA, Ribosomal, 16S , Tumor Necrosis Factor-alpha , Amino Acids , Purines , Body Weight , Lipids , Dextran Sulfate/toxicity , Disease Models, Animal , Colon
10.
Clin Transl Med ; 14(1): e1553, 2024 01.
Article in English | MEDLINE | ID: mdl-38279870

ABSTRACT

BACKGROUND: T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is an immune checkpoint molecule that suppresses CD8+ T-cell function in cancer. However, the expression profile and functional significance of TIGIT in the immune microenvironment of lung adenocarcinoma (LUAD) remain elusive. Interleukin (IL)-15 has emerged as a promising candidate for enhancing CD8+ T-cell mediated tumour eradication. Exploring therapeutic strategies that combine IL-15 with TIGIT blockade in LUAD is warranted. METHODS: We investigated the regulatory network involving coinhibitory TIGIT and CD96, as well as costimulatory CD226 in LUAD using clinical samples. The potential role of TIGIT in regulating the pathogenesis of LUAD was addressed through a murine model with transplanted tumours constructed in Tigit-/- mice. The therapeutic strategy that combines TIGIT blockade with IL-15 stimulation was verified using a transplanted tumour murine model and a patient-derived organoid (PDO) model. RESULTS: The frequency of TIGIT+ CD8+ T cells was significantly increased in LUAD. Increased TIGIT expression indicated poorer prognosis in LUAD patients. Furthermore, the effector function of TIGIT+ CD8+ tumour-infiltrating lymphocytes (TILs) was impaired in LUAD patients and TIGIT inhibited antitumour immune response of CD8+ TILs in tumour-bearing mice. Mechanistically, IL-15 enhanced the effector function of CD8+ TILs but stimulated the expression of TIGIT on CD8+ TILs concomitantly. The application of IL-15 combined with TIGIT blockade showed additive effects in enhancing the cytotoxicity of CD8+ TILs and thus further increased the antitumour immune response in LUAD. CONCLUSIONS: Our findings identified TIGIT as a promising therapeutic target for LUAD. LUAD could benefit more from the combined therapy of IL-15 stimulation and TIGIT blockade.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Animals , Humans , Mice , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/metabolism , CD8-Positive T-Lymphocytes , Disease Models, Animal , Immunotherapy , Interleukin-15/pharmacology , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Tumor Microenvironment
11.
EMBO Mol Med ; 16(2): 251-266, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38238529

ABSTRACT

Peritoneal metastasis (PM) has a suppressive tumor immune microenvironment (TIME) that limits the effects of immunotherapy. This study aimed to investigate the immunomodulatory effects of intraperitoneal administration of IL-33, a cytokine that is reported to potentiate antitumor immunity and inhibit metastasis. We found survival was significantly prolonged in patients with high IL-33 mRNA expression. In immunocompetent mice, intraperitoneal administration of IL-33 could induce a celiac inflammatory environment, activate immunologic effector cells, and reverse the immunosuppressive tumor microenvironment, which effectively delayed tumor progression and PM of gastric cancer. Mechanistically, IL-33 could induce M2 polarization by activating p38-GATA-binding protein 3 signaling. IL-33 combined with anti-CSF1R or p38 inhibitor to regulate tumor-associated macrophages (TAMs) had a synergistic antitumor effect. Inducing a local inflammatory milieu by IL-33 administration provided a novel approach for treating peritoneal metastasis, which, when combined with TAM reprogramming to reshape TIME, can achieve better treatment efficacy.


Subject(s)
Peritoneal Neoplasms , Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/therapy , Peritoneal Neoplasms/therapy , Peritoneal Neoplasms/metabolism , Peritoneal Neoplasms/pathology , Interleukin-33/genetics , Interleukin-33/therapeutic use , Interleukin-33/metabolism , Macrophages , Immunotherapy , Tumor Microenvironment , Cell Line, Tumor
12.
J Hazard Mater ; 465: 133488, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38219593

ABSTRACT

Untreated radioactive iodine (129I and 131I) released from nuclear power plants poses a significant threat to humans and the environment, so the development of materials to capture iodine from water media and steam is critical. Here, we report a charge transfer complex (TCNQ-MA CTC) with abundant nitrogen atoms and π-conjugated system for adsorption of I2 vapor and I3- from aqueous solutions. Due to the synergistic binding mechanism of benzene/triazine rings and N-containing groups with iodine, special I-π and charge transfer interaction can be formed between the guest and the host, and thus efficient removal of I2 and I3- can be realized by TCNQ-MA CTC with the adsorption capacity up to 2.42 g/g and 800 mg/g, respectively. TCNQ-MA CTC can capture 92% of I3- within 2.5 min, showing extremely fast kinetics, excellent selectivity and high affinity (Kd = 5.68 × 106 mL/g). Finally, the TCNQ-MA CTC was successfully applied in the removal of iodine from seawater with the efficiency of 93.71%. This work provides new insights in the construction of charge transfer complexes and lays the foundation for its environmental applications.

13.
Nucleic Acids Res ; 52(D1): D1629-D1638, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37638765

ABSTRACT

Recent advancements in single-cell RNA sequencing (scRNA-seq) technology have enabled the comprehensive profiling of gene expression patterns at the single-cell level, offering unprecedented insights into cellular diversity and heterogeneity within plant tissues. In this study, we present a systematic approach to construct a plant single-cell database, scPlantDB, which is publicly available at https://biobigdata.nju.edu.cn/scplantdb. We integrated single-cell transcriptomic profiles from 67 high-quality datasets across 17 plant species, comprising approximately 2.5 million cells. The data underwent rigorous collection, manual curation, strict quality control and standardized processing from public databases. scPlantDB offers interactive visualization of gene expression at the single-cell level, facilitating the exploration of both single-dataset and multiple-dataset analyses. It enables systematic comparison and functional annotation of markers across diverse cell types and species while providing tools to identify and compare cell types based on these markers. In summary, scPlantDB serves as a comprehensive database for investigating cell types and markers within plant cell atlases. It is a valuable resource for the plant research community.


Subject(s)
Databases, Factual , Gene Expression Profiling , Plant Cells , Plants/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome/genetics
14.
J Ethnopharmacol ; 323: 117655, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38158099

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Danggui Buxue Tang (DBT) has been used for over 800 years to enhance Qi and nourish Blood, and it is particularly beneficial for cancer patients. Recent research has shown that combining DBT with chemotherapy agents leads to superior anti-cancer effects, thereby enhancing therapeutic efficacy. AIM OF THE STUDY: The aim of this study was to evaluate the effectiveness of a combination therapy involving doxorubicin (DOX) and Danggui Buxue Tang (DBT) in the treatment of triple-negative breast cancer (TNBC) and to elucidate the underlying mechanisms of action. MATERIALS AND METHODS: In vitro experiments were performed using MDA-MB-231 and 4T1 cells, while in vivo experiments were carried out using MDA-MB-231 xenograft mice. The therapeutic effects of the combination therapy were evaluated using various techniques, including MTT assay, colony formation assay, flow cytometry, transwell assay, immunofluorescence, transmission electron microscopy (TEM), histological analysis, western blotting, and bioluminescence assay. RESULTS: DBT was found to enhance DOX's anti-TNBC activity in vitro by promoting ferroptosis, as evidenced by the observed mitochondrial morphological changes using TEM. The combination therapy was also found to reduce the expression of Nrf2, HO-1, and GPX4, which are all targets for ferroptosis induction, while simultaneously increasing ROS production. Additionally, the combination therapy reduced nuclear accumulation and constitutive activation of Nrf2, which is a significant cause of chemotherapy resistance and promotes cancer growth. In vivo experiments using an MDA-MB-231 xenograft animal model revealed that the combination therapy significantly reduced tumor cell proliferation and accelerated TNBC deaths by modulating the Nrf2/HO-1/GPX4 axis, with no evidence of tissue abnormalities. Moreover, the combination therapy exhibited a liver protective effect, and administration of Fer-1 was able to reduce the ROS formation produced by the DBT + DOX combination therapy. CONCLUSION: This study provides evidence that the combination therapy of DOX and DBT has the potential to treat TNBC by promoting ferroptosis through the Nrf2/HO-1/GPX4 axis.


Subject(s)
Drugs, Chinese Herbal , Ferroptosis , Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/drug therapy , NF-E2-Related Factor 2 , Reactive Oxygen Species , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Disease Models, Animal
15.
Math Biosci Eng ; 20(11): 19065-19085, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-38052591

ABSTRACT

Fluidized bed granulation (FBG) is a widely used granulation technology in the pharmaceutical industry. However, defluidization caused by the formation of large aggregates poses a challenge to FBG, particularly in traditional Chinese medicine (TCM) due to its complex physicochemical properties of aqueous extracts. Therefore, this study aims to identify the complex relationships between physicochemical characteristics and defluidization using data mining methods. Initially, 50 types of TCM were decocted and assessed for their potential influence on defluidization using a set of 11 physical properties and 10 chemical components, utilizing the loss rate as an evaluation index. Subsequently, the random forest (RF) and Apriori algorithms were utilized to uncover intricate association rules among physicochemical characteristics and defluidization. The RF algorithm analysis revealed the top 8 critical factors associated with defluidization. These factors include physical properties like glass transition temperature (Tg) and dynamic surface tension (DST) of DST100ms, DST1000ms, DST10ms and conductivity, in addition to chemical components such as fructose, glucose and protein contents. The results from Apriori algorithm demonstrated that lower Tg and conductivity were associated with an increased risk of defluidization, resulting in a higher loss rate. Moreover, DST100ms, DST1000ms and DST10ms exhibited a contrasting trend in the physical properties Specifically, defluidization probability increases when Tg and conductivity dip below 29.04℃ and 6.21 ms/m respectively, coupled with DST10ms, DST100ms and DST1000ms values exceeding 70.40 mN/m, 66.66 mN/m and 61.58 mN/m, respectively. Moreover, an elevated content of low molecular weight saccharides was associated with a higher occurrence of defluidization, accompanied by an increased loss rate. In contrast, protein content displayed an opposite trend regarding chemical properties. Precisely, the defluidization likelihood amplifies when fructose and glucose contents surpass 20.35 mg/g and 34.05 mg/g respectively, and protein concentration is less than 1.63 mg/g. Finally, evaluation criteria for defluidization were proposed based on these results, which could be used to avoid this situation during the granulation process. This study demonstrated that the RF and Apriori algorithms are effective data mining methods capable of uncovering key factors affecting defluidization.


Subject(s)
Drugs, Chinese Herbal , Feasibility Studies , Algorithms , Water , Fructose , Glucose
16.
Signal Transduct Target Ther ; 8(1): 465, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38129401

ABSTRACT

Organ-specific metastasis is the primary cause of cancer patient death. The distant metastasis of tumor cells to specific organs depends on both the intrinsic characteristics of the tumor cells and extrinsic factors in their microenvironment. During an intermediate stage of metastasis, circulating tumor cells (CTCs) are released into the bloodstream from primary and metastatic tumors. CTCs harboring aggressive or metastatic features can extravasate to remote sites for continuous colonizing growth, leading to further lesions. In the past decade, numerous studies demonstrated that CTCs exhibited huge clinical value including predicting distant metastasis, assessing prognosis and monitoring treatment response et al. Furthermore, increasingly numerous experiments are dedicated to identifying the key molecules on or inside CTCs and exploring how they mediate CTC-related organ-specific metastasis. Based on the above molecules, more and more inhibitors are being developed to target CTCs and being utilized to completely clean CTCs, which should provide promising prospects to administer advanced tumor. Recently, the application of various nanomaterials and microfluidic technologies in CTCs enrichment technology has assisted to improve our deep insights into the phenotypic characteristics and biological functions of CTCs as a potential therapy target, which may pave the way for us to make practical clinical strategies. In the present review, we mainly focus on the role of CTCs being involved in targeted organ metastasis, especially the latest molecular mechanism research and clinical intervention strategies related to CTCs.


Subject(s)
Nanostructures , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Tumor Microenvironment
17.
Bioeng Transl Med ; 8(6): e10540, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023724

ABSTRACT

The management of infected wounds is still an intractable challenge in clinic. Development of antibacterial wound dressing is of great practical significance for wound management. Herein, a natural-derived antibacterial drug, tannic acid (TA), was incorporated into the electrospun polyvinyl alcohol (PVA) fiber (TA/PVA fiber, 952 ± 40 nm in diameter). TA worked as a cross-linker via hydrogen bonding with PVA to improve the physicochemical properties of the fiber and to reach a sustained drug release (88% release of drug at 48 h). Improved mechanical property (0.8-1.2 MPa) and computational simulation validated the formation of the hydrogen bonds between TA and PVA. Moreover, the antibacterial and anti-inflammatory characteristics of TA laid the foundation for the application of TA/PVA fiber in repairing infected wounds. Meanwhile, in vitro studies proved the high hemocompatibility and cytocompatibility of TA/PVA fiber. Further in vivo animal investigation showed that the TA/PVA fiber promoted the repair of infected wound by inhibiting the bacterial growth, promoting granulation formation, and collagen matrix deposition, accelerating angiogenesis, and inducing M2 macrophage polarization within 14 days. All the data demonstrated that the TA cross-linked fiber would be a potent dressing for bacteria-infected wound healing.

18.
BMC Geriatr ; 23(1): 695, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37880590

ABSTRACT

BACKGROUND: Individuals with mild cognitive impairment are at high risk of developing dementia. Dance therapy has promising applications in delaying cognitive decline. However, the effectiveness of dance therapy for older adults with mild cognitive impairment is unclear. The objective of this review was to evaluate the effectiveness of dance therapy on global cognitive function, specific cognitive subdomains, quality of life, and mental health in older adults with mild cognitive impairment to enrich health management strategies for dementia. METHODS: Electronic databases and grey literature were searched from inception up to September 23, 2023. The language was limited to English and Chinese. Relevant studies were screened and assessed for risk of bias. A meta-analysis and subgroup analyses stratified by measurement instrument, dance type, intervention duration, and frequency were conducted using the STATA 16.0 software. This review was conducted in accordance with the PRISMA guidelines. RESULTS: Ten studies involving 984 participants aged 55 years and over who met the eligibility criteria were included. Dance therapy significantly improved global cognitive function, memory, executive function, attention, language, and mental health (i.e., depression and neuropsychiatric symptoms). However, the effects of dance therapy on processing speed, visuospatial ability, and quality of life in older adults with mild cognitive impairment remain inconclusive. Moreover, dance interventions of longer duration (> 3 months) improved global cognition more than shorter interventions. CONCLUSION: This review reported that dance therapy was effective in improving global cognitive function, memory, executive function, attention, language, and mental health (i.e., depression and neuropsychiatric symptoms). Hence, it may be an effective non-pharmacological complementary treatment for older adults with mild cognitive impairment.


Subject(s)
Cognitive Dysfunction , Dance Therapy , Dementia , Humans , Aged , Mental Health , Quality of Life , Cognitive Dysfunction/therapy , Cognition
19.
Bioresour Technol ; 390: 129842, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37820968

ABSTRACT

The effective control of total nitrogen (ETN) and total phosphorus (ETP) in effluent is challenging for wastewater treatment plants (WWTPs). In this work, automated machine learning (AutoML) (mean square error = 0.4200 âˆ¼ 3.8245, R2 = 0.5699 âˆ¼ 0.6219) and back propagation artificial neural network (BPANN) model (mean square error = 0.0012 âˆ¼ 6.9067, R2 = 0.4326 âˆ¼ 0.8908) were used to predict and analyze biological nutrients removal in full-scale WWTPs. Interestingly, BPANN model presented high prediction performance and general applicability for WWTPs with different biological treatment units. However, the AutoML candidate models were more interpretable, and the results showed that electricity carbon emission dominated the prediction. Meanwhile, increasing data volume and types of WWTP hardly affected the interpretable results, demonstrating its wide applicability. This study demonstrated the validity and the specific advantages of predicting ETN and ETP using H2O AutoML and BPANN model, which provided guidance on the prediction and improvement of biological nutrients removal in WWTPs.


Subject(s)
Waste Disposal, Fluid , Water Purification , Waste Disposal, Fluid/methods , Neural Networks, Computer , Nitrogen/analysis , Nutrients , Sewage
20.
Biomed Pharmacother ; 165: 115274, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37542856

ABSTRACT

With the continuous improvement of people's living standard, the incidence of metabolic diseases is gradually increasing in recent years. There is growing interest in finding drugs to treat metabolic diseases from natural compounds due to their good efficacy and limited side effects. Over the past few decades, many phytochemicals derived from natural plants, such as berberine, curcumin, quercetin, resveratrol, rutin, and hesperidin, have been shown to have good pharmacological activity against metabolic diseases in preclinical studies. More importantly, clinical trials using these phytochemicals to treat metabolic diseases have been increasing. This review comprehensively summarizes the clinical progress of phytochemicals derived from natural plants in the treatment of several metabolic diseases, including type 2 diabetes mellitus (T2DM), obesity and non-alcoholic fatty liver disease (NAFLD). Accumulating clinical evidence shows that a total of 18 phytochemicals have good therapeutic effects on the three metabolic diseases by lowering blood glucose and lipid levels, reducing insulin resistance, enhancing insulin sensitivity, increasing energy expenditure, improving liver function, and relieving inflammation and oxidative stress. The information will help us better understand the medicinal value of these phytochemicals and promote their clinical application in the treatment of metabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Diabetes Mellitus, Type 2/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/drug therapy , Phytochemicals/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...